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Preface

The results of comparing real and synthetic texture during the recent
Smart Weapons Operability Enhancement Joint Test and Evaluation
suggested that a better way of generating texture for placement in
synthetic scenes be developed. In this study, we investigate three
accepted measures of texture: correlation length, fractal dimensions,
and parameters derived from the grey-level co-occurrence matrix as
candidates for a different texture generation algorithm. The output of
these measures (or metrics) are used as input to three texture
generating algorithms. A comparison is then made between the input
and output textures. The results of this study were not definitive and
future work is indicated. This study was supported by the Smart
Weapons Operability Enhancement Joint Test and Evaluation Program
Office, Dr. J.P. Welsh, director.
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Executive Summary

In the process of creating synthetic scenes for wuse in
simulations/visualizations, texture is created as a surrogate for high spatial
definition. For example, measuring the location and characteristic of every
blade of grass in a lawn, then simulating a scene of it would be excruciatingly
laborious. Various techniques have been devised to place the required details
in the scene through the use of texturing. Experience gained during the recent
Smart Weapons Operability Enhancement Joint Test and Evaluation (SWOE
JT&E) has shown the need for higher fidelity texturing algorithms, and a
better parameterization of those that are in use. This study, analyzes four
aspects of the problem: texture metrics, texture creation algorithms, texture
extraction, and texture insertion.

The overall idea is to see if a textural property can be measured with a metric,
and use it as a seed for the creation of texture with that same textural
property. Textural metrics can be parameterized, resulting in texture created
for insertion into a scene. Texture extraction is the problem of determining
metrics capable of capturing the textural aspects of a scene element. Texture
insertion is just the reverse problem; mapping a texture into a scene element.
Furthermore, if the texture metrics are parameterized, the task of synthetic
scene generation is simplified. For example, if a particular metric describes
the texture of a certain scene element and that metric varies only with time of
day, then that parameter (time), can be used to determine what the texture
should measure at that time. The question becomes, can we generate a texture
that measures properly according to some metric? The major purpose of this
study is to determine the algorithms that use certain texture metrics as seeds,
and to generate texture maps. These maps are studied to determine if they
yielded correct measures of their texture. The three texture metrics used in
this study are those used in the SWOE JT&E analyses: correlation length,
metrics derived from the grey level co-occurrence matrix, and fractal
dimension. Reviewers of this report noted that some of our fractal
dimensions are not of the expected value. The textured metrics used are
limited in their use and application. We did not attempt to study this situation
in detail, although it is addressed in the conclusions of the report. The texture
generation algorithms used in this study are based on the same three metrics.




1. Introduction

Haralick and Shapiro define texture as the property of an image where small
regions of the image experience “wide variation of tonal features.” [1] This
is opposed to the grey-tone property where small regions experience “little
variation of discrete tonal features.” The small regions make up the set of
feature and background fragments of an image, which can be resolved as
unique portions of the image. The textural properties are below the resolution
threshold for definition of features. A grey-tone feature is a region of
contiguous pixels that are all at or near the same grey level: all white, all
black, or somewhere in between. A textural feature is a region of contiguous
pixels whose grey level varies from pixel to pixel, or from a couple of nearby
pixels to another couple of nearby pixels. The variation takes on a continuum
of characteristics from a variety of highly-ordered, or structured, patterns to a
variety of random patterns. The textural features can be composed of large,
grey-tone features; small, grey-tone features or a combination. The measures,
or metrics, are the tools used to describe texture and are based on a variety of
mathematical operators that are applied to the 2-D array of pixels. The real-
world properties that cause texture to exist are relief, and optical and thermal
characteristics (such as emissivity, thermal conductivity of the various scene
elements), which exist on a small scale relative to the rest of the elements
(features) in the scene.

This paper addresses how the fine detail, which is present in the real world,
be represented in synthetic imagery without resorting to the laborious and
time-consuming efforts of including the details in a modeling and simulation
effort.

Figure 1 provides an example of high-resolution texture map. This image
was obtained during the SWOE JT&E [2] by the Waterways Experiment
Station (WES) of the U.S. Army Corps of Engineers. It is a high spatial
resolution image of a small region of natural terrain located at the Yuma I
field test site (one of the locations used during the SWOE JT&E series of
field tests). The data was obtained with a far infrared (IR) (8 to 12 pum),
thermal imager configured with a narrow field-of-view lens. The texture
images provide the raw material for the SWOE JT&E synthetic texture
generation approach to the problem of creating fine-detail synthetic texture
without time-consuming, highly-detailed modeling.
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Figure 1. An example of a texture image, obtained during the
SWOE JT&E to define a texture field for input to the SWOE image

generating process.

Textural measures used to compare the real and synthetic imagery indicate
that the procedures for introducing texture into a synthetic image are flawed,
in some cases as indicated by the results of the analyses of the SWOE JT&E
synthetic imagery. [3] Figure 2 illustrates this problem. The figure consists
of three panels: a real image, a synthetic image, and a homogeneous region
map. The variation in grey level within homogeneous regions (defined
approximately by the panel on the right) in the synthetic image is generally
lacking. There are artifacts in the various panels that should be ignored for
the purposes of the discussion here, such as the relative contrast between the
trees and terrain for real and synthetic images, and the border around the real

image.
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Figure 2. Three panels demonstrate the presence of texture in the real scene.
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Developing texture-generating algorithms and comparing the resulting
synthetic textures among themselves, and with real texture is the focus of this
paper. The textural metrics and the texture generating algorithms used in this
investigation are briefly discussed. A comparison is made between the output
of the algorithms and the real textures.




2. Texture Metrics

Texture metrics, or measures, are used to quantify a textural property of the
region of interest so that various regions may be compared to see if they
contain similar or different textures. For example, in the SWOE JT&E Final
Report [2] textural metrics were used to determine if the same portions of the
real and the synthetic image were actually the same. The standard, first-order
metrics, such as average grey level, do not give any information as to the
textural structure of the image. The second order metrics, such as correlation
length do allow comparison of textures between images. These metrics
become the eyes that allow descriptive comments such as herring-boned
structure, fine-grained, coarse-grained, random, and isotropic to be made
about a textural feature. These metrics can also be used to segment an image
into regions of similar texture through application of a particular metric to
small regions of the image. These metrics are rarely used to actually compare
regions for the determination of a degree of similarity because there are no
standards for these quantities to rank the texture feature under study. For
example, a particular feature is 0.9 out of 1.0 of having the particular property
being measured.

The three measures discussed in this paper are:

Correlation length: The lag where the spatial autocorrelation declines
to 1/e of its maximum value. Lag, in this instance, is the distance
measure defined by the sampling interval in space, such as a pixel.

A derivative of the grey-level co-occurrence matrix (GLCM): The
GLCM measures “the dependence between pairs of grey levels arising
from pixels in a specified spatial relation. " [1] For example, the
number of times a given grey-level pair occur side-by-side, relative to
one another, at separations of two pixels, three pixels, and so on is
examined. A variety of metrics (entropy, contrast, etc.) based on
various moments of the GLCM have been developed that provide
varying degrees of parameterization of the texture.

Fractal dimension: For the purposes of this paper, the fractal
dimension is defined as the parameter D in the following equation:

13
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D=n+1-H (1)

with n = 2, the dimension of the process (a line has a value of 1, a two-
dimensional process, 2, and a three-dimensional process, 3), and

2H=f-n. (2)

Under the assumption that the image grey-level variation can be modeled as a
“fractional Brownian ‘noise”” (0 < H <1), the value of #is determined from
the slope of the power spectral density function of the image. The fractal
dimension then measures the degree of roughness of the image. [4] [5]

These metrics are used to compare various synthetic textures. These metrics
can also be used as “seeds” for algorithms to generate texture.

There is some question as to some of the results of applying these three
metrics to a particular sample of data. In particular, some of the fractal
dimensions we arrive at are less than 2.0. According to the literature, this
would indicate a line and not a surface. All the metrics we use, and many
others as well, do not behave predictably all of the time for a variety of
reasons. In the case of the GLCM, the way an image is quantized (eight bits
versus four bits, or even two bits) results in differing GLCMs. There is no
guidance for choosing one over the other. There are several ways to define
correlation length. Hilgers et al. compare different measurements of
correlation length and assess the stability and precision of their results. [6]
They conclude that their results depend on how the correlation length is
computed, which depends on how the image is sampled, and the finite size of
the sample.

As we compute it, the fractal dimension depends on the measurement of the
slope of the power spectral density curve, which depends on the spectral
leakage caused by the windowing function, the presence of trends, and
aliasing. This says nothing about the assumption that power-law scaling
exists. Some of these issues have been addressed by Austin et al. and Fox. [7]
[8] Fox states that the Fourier analyses has a strong statistical foundation
behind its application that is often overlooked. On the other hand, the fractal
analysis does not, and it appears as though this is still true today. Fox
executes an empirical study between fractal dimension and power-law




frequency spectra to conclude that the relationship is non-linear, except in the
region near B = 2, which is also the region where the slopes cluster due to
spectral leakage. [7] This does not necessarily solve the problem of
questionable numbers, but serves to show that much remains to be
accomplished in this field and that a more in-depth analysis should be
performed along the lines of that Fox demonstrates.

15




3. Texture Algorithms

A texture map, generated from a fractal dimension algorithm is expected to
produce a measure that is the same value as the fractal dimension. If that
measure were capable of capturing all aspects of the real texture and, at the
same time, the texture-generating algorithm based on that measure was a
capable algorithm, the other textural metrics (correlation length, etc.) would
also be expected to provide the same measure for the real and synthetic
textures. If some aspect of this expectation is not met, then further study will
be suggested. It is not expected that any one of these algorithms will be
successful 100 percent of the time. Therefore, we chose three measures to
use in three different algorithms to generate texture.

The mid-point displacement algorithm is a method of generating a two-
dimensional fractional Brownian motion or noise. This approximate method is
described in The Science of Fractal Images. [9] The mid-point displacement
algorithm produces an image that only approximates a fractional Brownian
"motion". Another algorithm, based on this same concept, does a better job.
[10] See appendix A.

The GLCM method for building the textures presented here, is based on the
algorithm described in the paper by G. Lohmann. [11] In the algorithm, a set
of four grey-level co-occurrence matrices provide feature vectors. Lohmann
reports that the four primary co-occurrence matrices (horizontal, vertical, and
lefi- and right-diagonal) contain sufficient information to synthesize texture
that closely resemble textures from remotely-sensed images of the Landsat/TM
and ERS-1/AMI satellite-borne sensors. Our idea is to determine how well this
algorithm performs on our type of imagery.

For a description of the correlation length algorithm used in this study, see
appendix G where the basic methodology is laid out: [12]

Numerous approaches to texturing were reviewed and a
simplified two-dimensional, autoregressive (AR) model was
selected. It uses correlation length in vertical and horizontal
directions and brightness mean and standard deviation as input
parameters for a kernel (process of order [1,1]). The model was

17
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developed from an AR model used in the U.S. Air Force Infrared
Modeling and Analysis (IRMA) image modeling system.

An empirical approach was taken because of the lack of general
theory or models on thermal IR texture. Using this approach
homogeneous surfaces (grass, bare soil, trees, tree lines, etc.) of
interest were imaged for the times (or under similar conditions)
the synthetic scenes were to be generated. Textural features of
these surfaces were measured and input to an AR texture
generator program, which generated isotropic Gaussian texture
maps. These maps were used by the rendering software to texture

the polygons.

The raw output of the basic program, the isotropic Gaussian texture maps, is
smoothed to reduce vertical and horizontal striation artifacts for long
correlation lengths. Both raw and smoothed maps are used in the study reported
here.

Figure 3 shows the target texture attempted to be reproduced by the various
algorithms discussed in this section. The map is a 32 by 32 image (segmented
from the image/texture map of figure 1), which has texture properties that are
given in table 1.




Figure 3a. Texture that is the target for the various
generating algorithms.
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Figure 3b. The histogram of grey levels for the target
texture image of figure 3a.
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The results shown in table 1 are derived from the application of the
corresponding metric to the image. The table headings are acronyms for the
metrics discussed briefly in section 2. With the exception of the mean and
variance, the metrics measure the second-order statistics of the images. All
have been used in studies of the textural properties of images. More details on
the form and application of these metrics can be found in
Bleiweiss et al. [3]

In tables 1, 2 and 3 MEAN is the average grey level of the texture map (ranges
from 0 to 128), VAR is the variance of the grey levels in the texture map,
FRAC D is the fractal dimension, ACL is the autocorrelation length, CONTR,
CORR, ENTRPY, and HOMOG, are the GLCM metrics called contrast,
correlation, entropy, and homogeneity, respectively. The GLCM metrics are
somewhat self-explanatory. More detailed explanations of these
metrics are in appendix C.

Table 1. Texture measure values for the target texture

Mean VAR FRACD ACL CONTR CORR Entropy HOMOG
57.247 338.116 1.965 3.537 222219 0.667 4.644 0.014

Mid-Point Displacement Algorithm

The mid-point displacement algorithm is a method of generating a two-
dimensional fractional Brownian motion or noise. This approximate method is
described in The Science of Fractal Images. [9] Quoting from this reference,
but modifying the discussion to fit the two-dimensional aspects of our problem,
a two-dimensional fractional Brownian motion is defined as a two-dimensional
process (a random field) X(z,,t,) with the following properties:

The increments X(t,,t,)— X(s,,s,) are Gaussian with zero
mean and the variables s and ¢ are positions in the process;
i.e., ¢ is the x-y coordinate of the point under discussion and s is
another point at another Xx-y coordinate at some distance
removed from 7.




The variance of the increments X(t,,1,)— X(s,,s,) depends

only on the distance
2 2
(t-s)
i=1

and is proportional to the 2H —th power of the distance, where
the parameter H again satisfies 0 < H <1. Thus,

B X (1) - X (552 )= ( 21 (: _S")ZJH

!

or

2H

Var(X(t,,tz)— X(sl,sz)) = 20'2{\/(t1 -5,) +(t —sz)z} . (3

Figure 4 demonstrates the values of the random field at two points. They are
separated by distance d and denoted by A and B. In this notation, a fractional
Brownian motion has the property that the difference between A and B, A-B, is
Gaussian with mean 0 and variance 20%d*". Thatis,

Var(4- B)=E{(4- B)'} =20%d". 4)

The mid-point displacement algorithm begins by finding the corner values A,
B, G, and D of a two dimensional array (figure 5) and then, at each stage, finds
values at other positions relative to these in the following steps:

1) interior

2) edge

3) interior

4) interior (Ssymmetric).

The points in step four above are symmetric about the diagonal to those in step
three.

21
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Figure 4. A picture of the relative positions, A and B, within the random
field, separated by distance d.
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Figure 5. Graphical aid to assist in defining the detailed steps of the mid-
point displacement algorithm.

The initial step of this algorithm obtains values for the four corners 4, B, G, and
D by independently sampling a Gaussian distribution with zero mean and

variance o’d*"( figure 5). It is easy to show that equation (4) is satisfied for
any two adjacent values on an edge. For example, 4 and B:

Var(4- B)= E{(4- B)'} =E{4}+ 2E{4B}+ E{B"} (5)
Using the independence of 4 and B we have,
Var(4 - B)=E{4’}+ E{B*} =0’ +o’d™" =25°d™". (6)

This verifies equation (4 ) for the pair of points 4 and B. The same result
obtains for pairs (B,D), (4,G), and (G,D).

Equation (4) is not satisfied for the diagonal pairs (4,D) and (B,G). From the
independence of 4 and D and the definition of 4 and D we have, just as above,

22




Var(4 - D)=2c"d*" . 7

But if equation (4) were to be satisfied by the pair 4 and D, which is separated
by a distance of d V2, we would have the following different value for
Var(4-D) :

Var(4- D)= 2az(d42)2" . (8)

The mid-point displacement algorithm uses two recursive steps. One is used to
find the value of an interior center point m (figure 5). The other is used to find
the value of an edge point, such as that labeled e. The labels found in figure 5
are used in the following discussion to explain the respective recursive steps.

In figure 5, the value m at the center of a square with corner values 4, B, G, and
D is determined by the following formula:

_(4+B+G+D)

9
= ©)
where ¢ = an independent Gaussian variate with zero mean and variance
d 2H ’
Var(e) = o’ (7-2-) . (10)

In this step, the variance of the independent variate decreases by a factor of
(1/2)" . With this assignment for the variance, equation (4) will not be
satisfied for the pair (4,m) even at stage one of the algorithm.

In figure 5, the value e at an edge is found by:

(A+B+m)
=

3 (11

e

where 7 = an independent Gaussian variate with zero mean and variance

23
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Var(n) = o’ (g)m. (12)

Equation (4), therefore, will not be satisfied for the pairs (e,4) and (e, B).

The process for the first two stages is illustrated by figures 6 and 7. Figure 6
illustrates the points determined by stage one. The center point is labeled one
and the edge points, labeled two through five, are determined in this stage. No
interior points are determined in parts three and four of stage one.

interior: 1
edge: 2,3,4,5
interior: none

QN o
[0 TR~
U w =

interior: none

Figure 6. Depiction of stage one of the mid-point displacement algorithm.
The values at locations one through five are chosen.

Figure 7 shows the result of stage two. In part one of stage two the interior
points six, seven, eight, and nine are found in that order. In part two, the edges
10 through 17 are found. In part three, interior points 18 and 19 are found.
Finally, points 20 and 21 are determined.

A 12 4 16 B
10 6 20 8 11
2 18 1 19 3
14 7 21 9 15
G 13 5 17 D
Figure 7. Depiction of stage two of the mid-point displacement algorithm.
The values at locations six through 21 are chosen.

interior: 6,7,8,9
edge: 10-17
interior: 18,19
interior: 20,21

Figure 8 shows an example of a texture map produced by this algorithm. The
mid-point displacement algorithm produces an image that only approximates a
fractional Brownian motion. As the algorithm produces finer grids, the
variance of the difference of two nearby points roughly gets smaller as
prescribed by equation (4). Appendix A describes another algorithm, based on




equation (4). Appendix A describes another algorithm, based on this concept.
[9] which does a better job. The other algorithm was not discovered until this
project was well under way; otherwise, it would have been afforded a more

prominent p

lace in this report.

Figure 8a.

algorithm.

The texture image output by the mid-point displacement

Grey Level Distribution

250
Mud-Poict Replecesat Tackaiqae
H=103%

Poot ~
@ -1
= s

Number of Pixels
g

0 2 40 0 160 120

60 8
Grey Level

Figure 8b. The histogram of grey levels for the texture image of figure

8a.
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Grey-Level Co-Occurrence Matrix Algorithm

The Grey-Level Co-Occurrence Matrix Algorithm (GLCM) method for
building textures presented here is based on the algorithm described in the
paper by G. Lohmann. [11] The GLCM has been often used as a basis for the
calculation of secondary features such as contrast, correlation, entropy, and
homogeneity, which are used to categorize and segment textural features in
images. In this algorithm, a set of four GLCMs is used to provide feature
vectors. Lohmann reports that the four primary GLCMs (horizontal, vertical,
lefi- and right-diagonal) contain sufficient information to synthesize textures
that very closely resemble textures from remotely sensed images of the
Landsat/TM and ERS-1/AMI sensors. The idea is to determine how this

algorithm performs on our type of imagery.

Before discussing the algorithm we present some basic definitions. Consider
pairs of pixels separated by distance d at some angle ¢. Generally, distances of
one pixel and angles of 0, 45, 90, and 135° are used. The

(d =1, ¢ = 0°)-pairs are horizontally adjacent, the (d = 1, ¢ = 90°)-pairs are
vertically adjacent, the (d=1, ¢ = 45°)-pairs are right-diagonal neighbors, and
the (d = 1, ¢= 135°)-pairs are left-diagonal neighbors. If 7 denotes the number
of grey levels in the image, then the (d,¢)-co-occurrence matrix C, is an n by n
matrix, where an entry (i) of C, denotes the number of pairs of pixels
separated by distance d at angle ¢, which have grey values i and j.

The following examples of 0, 45, 90, and 135° co-occurrence matrices
(equations (14) through (17)) for the image called “target” below. Equation
(13) illustrate the above definitions:

targetimage={2 1 2 (13)

c, =10 1{, 14)




Cs=|1 0 0], (15)

Co=l0 1 1|,and (16)

o
o
vy
Il
—
—
o

(17)

The C, matrices are 3 by 3 in size because there are 3 grey levels in the target
image. If there were 16 grey levels in the image, then the GLCM would be 16
by 16, and so on.

The manner in which the grey level co-occurrence matrix is populated follows.
Referring to figure 9, all pairs of pixels in the target image that are separated by
a distance of 1 pixel at an angle of 0° are determined and the number inserted
into the 0° GLCM, C,. For example, the 0—>1 situation occurs once;
therefore, a 1 is placed in the GLCM at the position (0,1) as shown in panel
(a) of figure 10, while the 2 — 1 situation occurs twice resulting in a 2 at
position (2,1) as shown in panel (b) of figure 10. Continuing in this manner
results in the C, given by equation (14).

0>1-0
212
0-2-1

Figure 9. The pairing technique used to populate the 0° GLCM with a
distance of 1 pixel separating pairs in the horizontal direction.
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0 1 0

1 1

2 2 2
a b

Figure 10. Filling the 0° GLCM of the target image. Panel (a) is the result of
counting the number of (0—1) grey levels separated by a distance of 1 pixel in
the horizontal direction (=1), while panel (b) is populated from the number of
(2—1) occurrences (=2). The completed matrix is given in equation (14).

0 1 0

7 /7
2/1/2
1

0 2

Figure 11. The pixel pairs having a 45° relationship and whose numbers
are used to populate the C,; matrix.

Similarly, for the 45° GLCM, we count the number of occurrences of pixel
pairs separated by one space in the 45° direction as pictured in figure 11.
And, as with the 0° GLCM, the 45° and remaining GLCMs are given in
equations (15) through (19).

In the initial step of the algorithm, a random image is generated that has the
same grey level histogram as the target image whose texture we are trying to
replicate. The histogram is calculated from the row sums of the 0, 45, and 90

degree GLCMs:

hist[{] = rs0[i] - rs45[i]+ rs90[] + tr{7] (18)




where

hist[i] = # of occurances of greylevel i in the "target" image
rsO[z'] = sum of entries of row i of the 0 degree GLCM

rs45[i] = sum of entries of row i of the 45 degree GLCM

1s90[i] = sum of entries of row i of the 90 degree GLCM.

The vector tr[i]is the top right corner occupancy vector. That is,

‘ [] {1, if greylevel i occurs at the bottom right corner of " target"
r|i]| = .

0, otherwise

The values of these vectors, for our example, are given by the following
equations:
s0=(2] , (19)

rsd5=|1], (20)

rs90=|21, (21)

rs135=|2| , and . (22)

tr={0]. (23)
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Equation (23) can be verified in the example given by equation (13). To find
the number of 2's in the target image we calculate:

hist[2] = rs0[2] — rs45[2] + rs90[2] + tr[2]
=2 —2+43+40 (24)
= 3.

Note that the indices for the GLCM matrices begin with 0. The formula in the
computer code (appendix C) for the histogram is slightly different from
equation (23) in order to reflect the convention of placing the origin of an
image at the top left corner rather than at the bottom left as we have here.

This histogram is used to randomly populate a matrix to produce an initial
image. Equation (28) is an initial image with the same histogram as the
example given by equation (13) which is repeated here as equation (33).
Equations (29) through (32) and (34) through (37) are the four GLCMs
associated with the two images. The sum of the absolute differences of
corresponding positions of the GLCMs is a measure of the closeness of the sets
of the GLCMs. This measure of differences, known as the Manhattan metric,
is calculated for the individual GLCM matrices and summed to 19 in equation
(38). It should be noted with the Manhattan metric there are a variety of
distance measures used to describe the separation of two vectors. Three of
these are the Euclidean Distance, the Manhattan (or City Block) Distance,
and the Square Distance. Mathematically, these are, respectively:

E= [Z(Xf. - Y,)2] (25)
M=Y|X,-¥| (26)

S= MAX|X,-Y] . (27)

In the case of the Manhattan Distance, if binary vectors replace the vectors
X, and Y, then the distance is known as the Hamming Distance. [13]




29

(30)

€)y)
(32)

- (33)

(34)

(335)

7~
[~}
o
N’

)

— O

(o) IR =R o\ |

—_— - O

100

initial =

Cs=|0 0 1],

2

1

01
0 20

01 0]

(36)

target =| 2

C45= 1
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000
Cis=|110 (37)
011
A=6C,+6C;+06Cy +6C 5
=4+6+3+6 (38)

=19.

We begin a sequence of pairwise exchanges in the initial image in an attempt
to arrive at an image that is closer to the original target image as measured by
the distance metric. If the distance between the new image and the target
image is less than the distance before the pairwise exchange, we make the
exchange that results in a new image in the iterative process. However, if
there is no improvement, we may make the swap of the two grey level values
anyway. We can call this a "wildcard" switch. This is done with probability
p where:

1

P= 1+exp(A/T) '

(39

Here,

A = the current error
and

T = a temperature

that is slowly cooled down. This method is a way of simulating an annealing
process (see appendix B). The purpose of this wildcard switch is to allow exit
from a “local minimum.”

The algorithm halts if the number of successful attempts at switching falls
below some predetermined percentage of the number of pixels in the target
image lattice. This percentage is set to one percent or less of M, the number
of pixels in the target image. After each iteration of M attempts at switching,
the procedure either halts or the iteration continues with a new cooler




annealing temperature 7. As T gets smaller, the probability p also gets
smaller and eventually there are fewer and fewer "wildcard" switches.

When two grey levels are swapped in an image, very few (eight, at most) of
the entries of a co-occurrence matrix are affected. The entire co-occurrence
matrix does not have to be recomputed. To illustrate the effect on the 0°

“GLCM C, by way of example, suppose we swap the two grey levels that

are noted by an asterisk in figure 12. Then, figure 13 shows the contribution
of these grey levels to the GLCM, and figure 14 illustrates the changes that
occur after the swap has occurred. The contributions to the C, GLCM by
the new ordered pairs (1,0), (0,1), (1,2), (2,0) are shown in the right-hand
side of figure 14. The new C, GLCM is obtained by subtracting the first
change matrix from the old C, GLCM and then adding the second change
matrix, as illustrated in figure 15. The four locations in the new C, GLCM,
which have changed, are flagged by an asterisk. The two locations flagged
by a double asterisk could have changed, but did not because of
cancellations. In the most general case, a maximum of eight locations in a
GLCM could change as the result of swapping the two grey levels.

It is apparent from this example that it is important to keep track of grey
levels that are at the tail and tip of the arrows in figures 13 and 14. The
notation that is used in the computer code glemtex.c (appendix G) to label
these points is shown in figure 16, which is an annotated version of figure 11.
The P- denotes the “predecessor” of position P, the grey level at position P- is
the row index to the C, GLCM entry contributed by the pair 1-—>2. Similarly,
P+ indicates the successor of position P. The grey level of 1 at location P+ is
the column index of the C, GLCM contribution made by the pair 2—1.

In terms of these labels, the computer code glemtex.c considers three cases in
updating the GLCM resulting from a swap:

case 1 - point Q coincides with point P-;
case 2 - point Q coincides with point P+;
case 3 - all of the rest.

These labeling conventions are used in the functions change and update ' glem

in glemtex.c and are explained here for better understanding of the code. The
computer code also checks to see whether points P-, P+, Q-, and Q+ fall
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outside of the image. For example, if point P is at a left edge, the point P- does
not exist when considering the case of a 0° GLCM.

Figure 17 is an example of a texture map produced by the GLCM-based
algorithm. The textural properties for this map are listed in table 2.

1 2* 1
initial={1 0* 0},
0 2 2

Figure 12. This figure, first in a series (12 through 15), demonstrates the
affect the swapping of two grey levels has on the GLCM. In this case, the

*.ed values are the two positions being swapped.

1 » 2 > 1,
+1

1 - 0 - 0 yields: +1 +1
+1

Figure 13. The second figure, of the series (12 through 15), indicates the
portion of the 0° GLCM that is affected by the values being swapped, and
by how much it is affected. :




1 > 0 - 1
+1
1 » 2 > 0 yields: +1 +1
‘ +1

0 2 2

Figure 14. The third figure, of the series (12 through 15), indicates the
portion of the 0° GLCM affected after the swap, and by how much.

0* 1* 1 1 01 1 00 010
1** 0 1**f = |1 0 1| - |1 0 1| + |1 01
1* 0* 1 011 010 1 00

new C, GLCM old C, GLCM  1st change 2nd change
matrix matrix

Figure 15. The last figure, of the series (12 through 15), demonstrates the
technique used to determine the mew GLCM without completely
recalculating the whole GLCM.
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Figure 16. The labeling of the various elements of the GLCM, in this case
the C, GLCM, to keep track of how the swaps are made.




Figure 17a. A texture map created through the use of the GLCM-based

technique.
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Figure 17b. The histogram of grey levels for the GLCM-based texture

map of figure 17a.
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Correlation Length Algorithm (Current Texture

Generation Process)

The two-dimensional AR model used in this study is found in the report by
Sabol and Balick. [14] The texture generation code is listed there. The
PASCAL code was translated into C for this study, and is included in appendix

D.

In paragraph 6.4 of appendix G of the SWOE Final Report, [2] the basic

methodology is laid out:

An empirical approach was taken because of the lack of general
theory or models on thermal IR texture. Using this approach
"homogeneous" surfaces (grass, bare soil, trees, tree lines, etc.)
of interest were imaged for the times (or under similar
conditions), the synthetic scenes were generated. Textural
features of these surfaces were measured and input to an AR

texture generator program, which generated isotropic Gaussian

texture maps. These maps were used by the rendering software
to texture the polygons.

Numerous approaches to texturing were reviewed and a
simplified two-dimensional AR model was selected. It uses
correlation length in vertical and horizontal directions and
brightness mean and standard deviation as input parameters for
a kernel (process of order [1,1]). The model was developed
from an AR model used in the US Air Force Infrared Modeling
and Analysis (IRMA) image modeling system.

Study of the computer code reveals that texture is generated one pixel at a time,

using the following equation:

P[i,j]=al* Pli, j ~ 1]+ a2+ Pli -1, j] - al*a2* P[i = 1,j - 1]+ R[i, ]

(40)



where :

i = current low location

j = current column location
P[i , j] = pixel at location [i, j]

R[i , j] = random number generated at location [i ] ] .

The random number, R[i, /], is constrained such that following conditions are
met:

mean = m(l—-al-a2+al*a2)

variance = s’ [1—a2*a2—a1*a1(a2*a1)2]
where:

m =mean gray level of the image

s =standard deviation of gray level in image

al =exp(1/h)

a2 =ext(1/v)

h = horizontal correlation length of gray level variation in image
v = vertical correlation length of gray level variation in image.

Note that equation (40) is not the same as the corresponding equation on page
five of the Sabol and Balick. [14] Equation (40) as shown here reports what
is in the PASCAL code.

Sabol and Balick cite that several modifications were made to the original AR
model. Modifications are listed, with our comments:

1) Texture used in this application is isotropic therefore / and v
are set to the same value.

2) Mean and standard deviation are fixed at 128 and 32,
respectively.
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(In our study, the mean and standard deviation of a target-
texture image are used as input parameters to the computer
program to fix the mean and standard deviation of the
generated image. The model automatically produces an image
with the specified mean and standard deviation.) |

3) Because the AR model is only a first-order model (based on
immediate neighbors), artifacts (vertical and horizontal
striations) are generated for long correlation lengths (such as,
correlation length >> 1). A moving-average filter (low-pass
filter ) is applied to the output of the AR module to reduce
these artifacts. Only the diagonal elements are included in the
filters, and all are given equal weight. The size of the filter is
set to the correlation length.

(In our study of the PASCAL (procedure moving-average),
we noted that the low-pass filtering was accomplished by a
convolution filter of fixed 3 by 3 size.)

4) The low-pass filtering described above compresses the
distribution of values in the texture map. Larger moving
average filters result in greater compression of the distribution.
The desired mean of 128 and standard deviation of 32 for the
distribution is restored using a histogram specification
algorithm, which does a one-to-one remapping of digital values
to restore the desired standard deviation to 32.

(For our study, the remapping for the filtered image was not
performed.)

5) Internally, a 300 by 300 texture array is generated, but only
the center 256 by 256 is output. This eliminates initialization
effects and provides a large enough area to apply the moving
average filter.

(For our study a 32 by 32 pixel image was generated. No
attempt was made to generate a larger image from which to
extract a 32 by 32 subimage was made.)

In the PASCAL listing for the function RANI, in the Sabol and Balick report,
the constant M2 is defined M2 = 124456. [14] This varies from Press et al.




where the function RAN1 is listed with a PARAMETER M2 = 134456. [15]
There is a single digit discrepancy between these two numbers. According to
Press, the choice of constants used to implement a random number generator
(of which this parameter, M2, is one) is critical to the proper operation of the
generator. However, it is beyond the scope of this report to delve into this
aspect further.

Figure 18 shows an example of both the raw and smoothed texture map
produced by the algorithm. The textural properties of these maps are given in
table 2.
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Figure 18a. A typical raw image (a) and the resultant filtered image (b), which are created from the correlation length

algorithm.
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4. Comparisons and Discussion

The target texture, which is the one to be duplicated by the various
algorithms, is shown in figure 19 (a). This map is a 32 by 32 image
(segmented from the image/texture map of figure 1) that has texture
properties given in table 1. For the correlation length technique, we present a
typical raw image (unsmoothed) in figure 19 (b). In figure 19 (c) the midpoint
displacement result is shown, and in figure 19 (d), the grey level co-occurrence
matrix technique output is demonstrated. Table 2 contains the results of
applying the various texture metrics to these texture maps. The table headings
are acronyms for the metrics discussed in section 2. With the exception of the
mean and variance, these metrics measure the second order statistics of the
images. All have been used in many studies of the textural properties of
images. The target texture is shown in figure 3, the texture generated by the
mid-point replacement algorithm is shown in figure 8, figure 17 shows the
GLCM-generated texture, and the IRMA (raw and smoothed) is shown in
figure 18. Figure 19 repeats many of these maps on smaller scale for side-by-
side comparison. Reference should be made to the text for definition of the
table headings. More details on the form and application of these metrics can
be found in Bleiweiss. [3] MEAN is the average grey level of the texture map
(ranges from 0 to 128), VAR is the variance of the grey levels in the texture
map, FRAC D is the fractal dimension, ACL is the autocorrelation length,
CONTR, CORR, ENTRPY, and HOMOG, are GLCM metrics called “contrast”,
“correlation”, “entropy”, and “homogeneity,” respectively. The GLCM metrics
are somewhat self-explanatory in meaning.

Table 2. Texture measure values for generated textures shown as
examples in various figures '

SOURCE MEAN VAR FRACD ACL CONTR CORR ENTROPY HOMOG
Target Texture 57.247 338.116  1.965 3.537 222219 0.667 4.644 0.014
Mid-pt replace 56.740 338.052 1.774 9.312 22.554 0.967 6.641 0.002
GLCM 57.247 338.115  1.804 1.410 376.695 0427 4.776 0.013
IRMA 58.790 338.043 2117 3.539 164.708 0.760 7.180 0.001
IRMA(Smoothed) 58.885 211740  1.593 4314 54.050 0.873 6.799 0.001
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Table 3. Texture measure values for generated textures

Source MEAN VAR FRACD ACL CONTR CORR ENTRPY HOMOG
Target Texture 57247 338116 1965 3537 222219 00667 4.544 0.014
Mid-ptreplace  average | 56.756  336.775 1920 1116 14393 0978 6419 0.002
stddev | 0034  4.268 0.139 8274 8.1l 0012 0.197 0.00052
GLCM average | 57.247 338116  2.163 1452 394532 0399  4.802 0.013
stddev | 0000 0000 0134 0402 20833 0032 0015 0.00020
IRMA average | 56.027 327618 2159  3.055 160203 0748  7.126 0.001
stddev | 5013 67931  0.156 0.811 13776 0045 0051 0.00010
IRMA average | 56.022 213424 1958 3813 53767 0864  6.760 0.001
(smoothed) stddev | 5059 63775 0189 1211 5503 0031  0.101 0.00017

Each algorithm was run 101 times, each with a different pick from the random
number generator. Each algorithm uses a random number generator; however,
the specific use is somewhat different from algorithm to algorithm. The results
of these calculations are shown in table 3, which are the same as table 2 except
the tabulated values applying to a single map are the average and standard
deviation of the results from application of the metrics to the 101 maps. The
sources labeled IRMA and IRMA (SMOOTHED) are autocorrelation length
algorithm output. The variation is due to the variation introduced by the use of
random number generators. The histograms from which these averages and
standard deviations were determined are shown in appendix D.

Reference to table 3, tells the story about the relative ability of the various
algorithms to replicate the target texture as measured by the various metrics
used in this study:

e mid-point replacement algorithm - The texture map created by
this technique is similar to the target texture as measured by the
fractal dimension (though not exact) but is different, as
measured by the other metrics.

e autocorrelation length (IRMA) algorithm - This texture map
(unsmoothed) is close as measured by the autocorrelation
length, but is quite different as measured by the other metrics
(with the possible exception of the fractal dimension which is




similar to that of the target). The smoothed output presents an
autocorrelation length much closer to the target. The fractal
dimension is nearly the same as for the target, in fact much
closer than that of the mid-point replacement algorithm. The
GLCM metrics all become worse under the action of the
smoothing function.

e GLCM algorithm - The texture map created by this algorithm is
about the same as the autocorrelation length algorithm as
measured by the fractal dimension and, except for the entropy
measure (which shows good agreement with the target entropy)
all of the other GLCM metrics show that this map is different
from the target map.

It would appear, then, that the autocorrelation-based technique (at least the
smoothed version) is best able to create an image whose autocorrelation is
nearly the same for target and synthetic, while the other techniques seem to
not be able to replicate themselves very well. A possible exception is the
IRMA and GLCM ability to yield a fractal dimension close to that of the
target. It remains to do a sensitivity study to determine the discrimination
ability of these various metrics as their values change by small amounts. For
example, is there much difference between a texture whose fractal dimension
is 2.75 and one whose value is 2.85, and so on. Visual inspection may favor
the GLCM algorithm, though this may be due to the level of pixellation in the
two maps and not truly comparable texture.

Why then, do the synthetic SWOE images have textural metrics, especially
the autocorrelation length, so different from the “real” images? [12] More
than likely, the answer lies in the way the texture was measured for input to
the SWOE model, the way in which the texture was applied to the synthetic
images, and the way in which the texture was measured in the real and
synthetic images. For example, the scene that was imaged for textural
characteristics was seen at a different perspective view, and with a different
spatial resolution than that of the real images and, the application of the
synthetic texture is made to the scene elements as seen from the imager’s
perspective (but with a texture as seen from a different perspective) and not to
the scene elements before they are rendered into an image.
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In fact, because the properties that create texture do not yield imagery that is
invariant to the viewpoint, it is not at all clear that using such a simple
approach would work at all. The only exception is a simple approach where
texture is extracted from the real images and then pasted into the synthetic
images. This really becomes a hybrid technique, not a true synthetic
technique. For an invariant approach, the texture should be applied as a
variation of small scale relief and optical properties (assuming that the
thermal properties are homogeneous at this scale) to the large scale relief.
Then, when the scene is rendered into an image, the texture is properly

mapped.

Future work may also look toward methods to parameterize texture based on
some sort of environmental parameter. For example, one approach still with
many limitations, would be to parameterize the measure of texture for a
particular imager view and then apply the correct texture based on the
parameterization. An example of how this would work is suggested by figure
20, a plot of a particular texture metric with time of day for the Yuma I field
exercise of the SWOE JT&E. During that effort, the meteorological
influences were quite even (day to day) so that diurnal trends in some of the
textural metrics could be seen. During the Grayling field exercises, the
meteorological influences were so variable that this simple correlation was
lost to ready viewing; though it may possibly be extracted through some sort
of multivariate analysis.
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Figure 19a. Four textures displayed in a common frame for comparison.
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Figure 19 (b). The histograms for the four textures of panels displayed in a common
frame, for a better visual comparison among them.
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5. Summary

We have demonstrated the generation of texture using three different
algorithms in an attempt to compare their various abilities to replicate a given
texture. The results of that demonstration are mixed, and though the
autocorrelation technique was certainly no worse than the rest of the
algorithms, it may be best suited for the task at hand. We feel that the
synthetic imagery (as judged by the metrics) generated in the SWOE process
did not compare more favorably with real image as to the textural properties,
because of the way the texture was measured and then applied to the imagery.
The dependence of texture on view angle was not taken into account. Also,
the texture, as seen by real imagers (for the case studied in the SWOE effort)
is not isotropic nor is it necessarily homogeneous over those scene elements
thought to be homogeneous. Definitive answers remain until a more in depth
study can be performed. The first step has been taken; the generation of the
software and methodology to perform the study.
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6. Future Directions

This effort has focused on possible quick solutions to the problem of
simulating the real texture of a scene, in lieu of modeling the scene at very
high-spatial resolution. We have shown that there does not appear to be a
quick solution to the problem among the techniques explored here. The
reasons for this include:

e texture generating algorithms are not good at producing a
texture with the same measure as the seed;

e texture metrics are not good at measuring the texture;

e some of the texture metrics are misused. The assumptions
underlying the model being used are not being met.

There may be a solution of the type we are looking for that will solve the
problem. However, our research provided no solutions. Additional work
might proceed in the following manner:

o further inventory of available texture metrics and their
appropriate algorithms for use in generating texture;

e grade the ability of these metrics to discriminate against the
type of textural features that we are likely to encounter.

Alternatives range from the very simple to the very sophisticated. For
example, choose a limited variety of features that are likely to generate
different textures, model them in detail, and then view them under a limited
number of conditions:

e sparse grass at 10 levels of sparseness;
e bare dirt at different levels of roughness;
e and soon.

These could then be modeled under a limited number of seasons, diurnal
conditions, and look angles to arrive at a library of textural features that could
be selected to fill in the appropriate polygons of the scene.
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To help in this modeling effort, we need to acquire a library of features that
are to be modeled. This could include synthetic aperture radar (SAR) data to
provide the relief component that goes into the model, field ground-truth
measurements to ascertain the degree of homogeneity/ihhomogeneity in the
thermal and optical properties of the scene. Hyperspectral imaging might be
useful here.

The Rochester Institute of Technology [16] as well as many other
organizations, such as Purdue University [17] are conducting similar efforts.
The Department of Defense and government directors of research such as the
Army Research Office, may also provide pointers. A library of digital texture
maps 1S available via FTP, over the internet at
whitechapel .media.mit.edu/Vistex. Other studies should not be
overlooked, as they may be of some help in ascertaining the utility of future
investigations by providing us with some standard textures.
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Acronyms and Abbreviations

AR

GLCM

IR

IRMA

SAR

SWOE T & E

WES

autoregressive

grey-level co-occurrence matrix

infrared

infrared modeling and analysis

synthetic aperture radar

Smart Weapons Operability Environment Joint
Test and Evaluation

Waterways Experiment Station
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Appendix A
Modified Mid-Point Displacement Algorithm
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The modified mid-point displacement algorithm is a method of generating a
two dimensional fractional Brownian "motion". This method is described in
Stoksik et al. (1995). Much of the notation and wording of the following
description comes from this paper. |

A two dimensional fractional Brownian motion (fBm) is a random process
with an average spectral power density given by

2
S(finfo) = —— (A1)

W77

where o is a constant. fBm is a zero-mean nonstationary Gaussian random
process B,(f) indexed by the parameter H,0<H<I. The symbol 7
represents the vector pair (f,,1,).

The exponent S, H, and the fractal dimension &, are related by the
equations: |

p=2H+2 (A-2)

§,=3-H (A-3)

The statistical behavior of fBm can also be described by its covariance
expression,

E{B, ()B4 (5)} = o* (" +[5"" ~IF -5") (A4)
where, for instance,

F=(t,.1,)
|f| = length of 7

and 5, |5], and | - 5| are defined similarly.

B, (f) is a nonstationary process with stationary increments. From Equation
(A-4) we can derive the following equation asserting the finiteness of the

structure function D(p):




D(p) = E{[B (7 + 5)- B, ()] | = 207" (A-5)

for finite p. In this expression it is evident that the middle expression
involving the expectation operator E is independent of z. The purpose of the
modified random displacement algorithm is to generate a sampled grid of
points where the statistical interrelationship of the points is given by Equation
(A-5), the structure function condition. Assuming a sampled set of points are
available which satisfy Equation (A-5), the algorithm generates new points
between the existing points. These new points are generated so as to ensure
that they have the correct statistical relationship with their nearest neighbors.

The originally proposed random midpoint displacement algorithm (RMDA)
is only accurate for the case of simple Brownian motion (/ = 0.5). For other
values of H there are correlations between the existing random variables that
must be considered when calculating the displacements for the interpolated
samples. In order to generate accurate fBm with the correct structure
function, the algorithm must be modified to account for the correlations
between points within the fBm.

The modified mid-point displacement algorithm begins by finding the corner
values of a two dimensional array and then stage by stage finds the values at
other points in the manner illustrated by Figures A-1 and A-2. A broad view
of the algorithm is gained by examining the organization of the computer
code accfrac.c (Appendix I). The computer code shows that each stage of the
algorithm determines (1) some interior points, (2) the edge points, (3) some
more interior points, and then (4) interior points which are at positions
symmetric to the diagonal relative to those determined in (3).

The modified algorithm starts with the calculation of the four corner samples
denoted by 4, B, G, and D in Figure A-3. If these four corner variates satisfy
Equation (A-5) we have the following six equations corresponding to
Equation (A-5) applied to the six possible combinations:
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E{(4- B)'} =20%d"" (A-6)
E{(A - G)Z} = 202%™ (A-7)
E{(B- D)’} =20%" | (A-8)
E{(G- D)’} =20%d™" (A-9)
E{(A - Dy } = 20? (d«/i)z" (A-10)
E{(B-G)'} =207 (av2)” (A-11)

The last two equations reflect the fact that the distance between the corner sample
locations is d+/2 .

We assume that the values 4, B, G, and D are derived from the following
combination of the auxiliary variates, S, 7, U, ¥, W, and X:

A=S+W/2 (A-12)
B=T+X/2 (A-13)
G=U-X/2 (A-14)
D=V-WI/2 (A-15)
interior: 1
A 4 B
edge: 2,3,4,5
2 1 3 <7
interior: none
G 5 D | .
interior: none

Figure A-1. This figure illustrates the values found in stage 1. Only the center
point labeled 1 and the edge points 2 through S are determined in stage 1. No
- interior points are determined in parts (3) and (4) of this stage.




4 12 4 16 B
10 6 20 8 11
2 18 1 19 3
14 7 21 9 15
G 13 5 17 D

interior: 6,7,8,9
edge: 10-17
interior: 18,19
interior: 20,21

Figure A-2. This figure shows the result of stage 2. In part (1) of stage 2 the
points 6,7,8, and 9 are found in that order. In (2), the edges 10 through 17. In
part (3) the points 18 and 19 are found. Finally points 20 and 21 are determined.

Ae eceo Be
e me °
Ge e De

Figure A-3. Graphical aid to assist in defining the detailed steps of the Modified
Mid-point displacement Algorithm.

Here S, T, U, and V are zero mean Gaussian variates with the same variance o’
yet to be determined. Both W and X are also zero mean Gaussian variates with
the different variance o also yet to be determined. The variates # and X
force correlations between the corner pairs (4,D) and (B,G).

Equations (A-6) through (A-11) force conditions on the two variances of the
six auxiliary variables which can be solved to yield the following expressions
for the values of o2 and o7 :

i=02(2—2”)d2” (A-16)
o} =40’ (2" - 1)d™" (A-1T)
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The modified mid-point displacement algorithm uses two recursive steps.
One is used to find the value of an interior center point m as in Figure A-3.
The other is used to find the value of an edge point also labeled e in Figure A-
3. The labels found in Figure A-3 will be used in the discussions that follow

which explain the respective recursive steps.

In Figure A-3, the value m at the center of a square with corner values 4, B,
G, and D is determined by the following formula:

(4+B+G+D)
m= 2

+& (A-18)

where ¢ is an independent Gaussian variate with zero mean and variance
Var(¢). The value of Var(¢) is obtained as follows. From Equations (A-12)
through (A-18), we can determine

E{(A —m)z} = 0'2(2”'2 +%)d2” + Var(e) ; (A-19)

whereas that predicted from Equation (A-5), the structure function condition,
is

E{(A —m)’} = 20 (%)w . (A-20)

The variance of the displacement, Var(¢), is, therefore,

Var(g) = (2“” — 22 %)d"’ : (A-21)

This value for Var(¢) will also force Equation (A-5) to hold for the other three
pairs (B,m), (G,m), and (D,m). By comparison, the unmodified RMDA takes
no account of the correlations of the corner samples and would use the
variance 0'2(2‘" )d”’ :

Using the notation of Figure A-3, the value e at an edge is found by:




+7, (A-22)

where 7 is an independent Gaussian variate with zero mean and variance

Var(n) = o (2"2" —%)d”’ : (A-23)

This value for Var(z) is found through evaluation of E{(4-e)2} using the
definition of e and the structure function condition. By way of contrast, the
RMDA would assign the following value for the variance of 7:

Var(n) = o* (%) =o’ (2'2”)d2” . (A-24)

In Stoksik, et al (1995), it is shown that this method yields images whose
structure functions are a good approximation to the ideal structure functions.
The structure functions were calculated by radial averaging of the two-
dimensional image (surface) and then plotting the resultant one-dimensional
curve on a log-log plot. It is not perfect because each interpolated point is
calculated from only the four adjacent points surrounding it and consequently
the structure function between an interpolated point and a more distant point
is not necessarily exact. Figure A-4 demonstrates the results of using this
algorithm for the values of H = 0.1 and 0.9, respectively. Figure A-5 shows
similar results for the original mid-point displacement algorithm as discussed
in the main body of this report.
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0.1 and =0.9.

t displacement algorithm for the parameters H=

id-poin

Figure A-4. Texture maps from the modified m




0.1 and =0.9.

Figure A-5. Texture maps from the original mid-point displacement algorithm for the parameters H
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1995.
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Appendix B

Simulated Annealing: A Brief Discussion
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The primary references used in the following brief discussion are Kirkpatrick,
et al. (1983), Kirkpatrick (1984), and Metropolis (1953). The McGraw-Hill
Dictionary of Scientific and Technical Terms (Parker 1989) defines
annealing in the following way: |

“To treat a metal, alloy, or glass with heat and then cool to remove
internal stresses and to make the material less brittle.”

Simulated annealing is a process whereby a “system” is brought to a “reduced
energy state”, or “temperature” through emulation of a naturally occurring
process -- this is accomplished by a variety of algorithms. The goal, in our
situation, is to find an absolute minimum through a process that does not get
led astray by local minima nor is caught for good in a local minimum -- we
want to find a rearrangement of pixels such that the resulting image has the
same, or nearly the same, GLCM as the target arrangement of pixels. To
accomplish this goal, simulated annealing is the process of choice.

In metallurgy, a system -- a metal - is heated to the fluid state, and the
temperature at which that occurs is noted. The temperature is then reduced,
according to some schedule (the “annealing schedule”) until the metal has
cooled to some predetermined state -- usually such that the end state is of
uniform condition; i.e., no cracks, etc. For the statistical mechanics
analogue, a system of particles is studied at “low temperature” which state
has been achieved by some annealing process. What happens in this case, is
that the system is at some initial configuration, {x,.} , with some potential
energy E which is determined by the Boltzmann probability factor:

exp[—E({x,. }) / kT] .

For our purposes, instead of the energy state, we use a “cost factor” defined to
be A and, instead of just decreasing T to arrive at an end state, we use what is
known as the “Metropolis Algorithm” to keep the iterative process moving.
This algorithm simulates the behavior of a many-body system at some
temperature. Use of this algorithm then “provides a natural tool for bringing
the techniques of statistical mechanics to bear on optimization.” Still quoting
from Kirkpatrick, et al. 1984:




Iterative improvement, commonly applied to such problems,
is much like the microscopic rearrangement processes
modeled by statistical mechanics, with the cost function
playing the role of energy. However, accepting only
rearrangements that lower the cost function of the system is
like extremely rapid quenching from high temperatures to T
= (, so it should not be surprising that resulting solutions are
usually metastable. ~ The Metropolis procedure from
statistical mechanics provides a generalization of iterative
improvement in which controlled uphill steps can also be
incorporated in the search for a better solution.

The simulated annealing process consists of first ‘melting’
the system being optimized at a high effective temperature,
then lowering the temperature by slow stages until the
system ‘freezes’ and no further changes occur. At each
temperature , the simulation must proceed long enough for
the system to reach a steady state. The sequence of
temperatures and the number of rearrangements of the {x,}
attempted to reach equilibrium at each temperature can be
considered an annealing schedule.

Annealing, as implemented by the Metropolis procedure,
differs from iterative improvement in that the procedure need
not get stuck since transitions out of a local optimum are
always possible at nonzero temperature.

The monograph by Beale and Jackson (1991) discusses this process as
applied to what are known as “Hopfield Networks” -- a neural network which
«_..consists of a number of nodes, each connected to every other node: itisa
fully-connected network...”. The Hopfield net uses simulated annealing to
allow exit from local minima -- large changes are implemented at “high”
temperatures in search of a path to a global minimum. The temperature is
reduced as the process proceeds which allows less drastic changes to be used
with the more probable result that the process ends up in a lower energy state.
The probability distribution which controls this process is the Boltzmann
distribution.
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Appendix C

Grey Level Co-Occurrence Matrix: A Brief Discussion
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Grey-level co-occurrence analysis "... characterizes the micro-texture of an
image region by measuring the dependence between pairs of grey levels
(our grey levels are in units of apparent temperature) arising from pixels in
a specified spatial relation" [Haralick and Shapiro, 1991]. This technique
may be applied to either the whole image (global feature definition) or to a
ROI (local feature definition). Although there are an extremely large
number of parameters to be derived from this analysis, it can be limited to a
few that have been shown to provide good discrimination between various
textures [Wahl, 1987; Ballard and Brown, 1982; Marceau et al.,1990]:

1) contrast -- this parameter is greatest when adjacent pixels are very
different in grey level

2) homogeneity -- this is greatest when most of the co-occurrences
are for the same two grey levels, it is a measure of how consistently
a pattern is repeated in an image

3) entropy -- this measures the "information content of the image; it
is greatest when all co-occurrence possibilities occur in equal
proportion

4) correlation -- correlation is greatest when the pixels in the (i,j)
pair are similar in grey level value and both values at the same time
are either above or below the average values for their respective

positions in the pair (x, andu)

Other "texture” analysis techniques are also available [He and Wang, 1990;
Therrien et al., 1986].

The grey-level co-occurrence matrix (GLCM) is a square matrix of width m
based on the number of grey levels in the image under analysis. For
example, an image quantized at 256 levels causes a GLCM of 256 x 256 to
be formed. Because this creates an extremely large matrix, the number of
levels is generally reduced to, generally, 8 or 16 [Wahl, 1987]. In addition,
as will be seen shortly in the definition of how the GLCM is formed, it 1s
possible to create a matrix for a large number of angles or orientations as
well; this too is usually reduced to a small number: 0°, 45°, 90°, and 135°.




The matrix is then a "distribution" of the number of times that certain
configurations of brightness levels occur. This can best be explained by
example [Haralick, 1974]:

digital image (1 columns and k rows):

I=1234
k=1 0011
2 0011
3 0222
4 2233
generalized GLCM:
grey level

0 1 2 3
0 #(0,0) #(0,1) #(0,2) #(0,3)

1 #(1,0) #(1,1) #(1,2) #(1,3)
grey level
2 #(2,0) #(2,1) #(2,2) #(2,3)

3 #(3,0) #(3,1) #(3,2) #(3,3)

where #(i,j) is the number of times that the i,j pair occur in the digital image
in a particular orientation. Specifically, for $=0° (horizontal orientation),
there are four times that a zero grey level value occurs left/right, right/left in
the digital image (in some instances, only the left/right or only the right/left;
i.e., uni-directional, direction is chosen which would yield a value of 2 for
this case):
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k,l1=1,1isnextto 1,2
=1,2isnextto 1,1
= 2,1 is next to 2,2
=22 is next to 2,1.

There are no more k,I positions where a zero grey level occurs and right
next to it, another zero occurs. This process continues in this manner to

yield the 0° GLCM :

And, we can continue with the example so that ¢ = 45°, 90°, and 135° are
processed:

Similar matrices can be obtained for distance measures greater than the
value of 1 which we have used -- we could have, for example, determined
the number of times that a zero is 2 spaces from another zero, etc.

The "textural features" that can be determined from these GLCM are at
least 28 in number; however, there are only 4-6 that have been found to be
most useful (as stated above). The mathematical formulations and the
labeling used in the table headings found in the main body of the report, for
some of these, are given below-(these are the ones which we have found to

be most useful):

homogeneity or energy or angular second moment:

N, N

i=1 j=1

contrast or inertia:

f= 3y 2

i=1 j=1

.




correlation:

N, N, Pi,
(i—,u,)(j—ﬂy) (;J)
_ i=1 j=1
fi= o0,

entropy:

and the definitions for the variables in the above equations are:

P(i, j) = the value of the i, j element of the GLCM,
R = normalization constant (equal to the number of neighboring
resolution cell pairs used in computing the matrix),
N, = number of gray levels,
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Histograms of Texture Metrics
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Figure D-1. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “correlation length” as applied to the texture map
generated by the Stoksik (1995) technique.
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Figure D-2. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “correlation length” as applied to the texture map
generated by the Lohmann (1995) technique.
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Figure D-3. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “correlation length” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-4. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “correlation length” as applied to the texture map
generated by the IRMA (smoothed output) technique.
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Figure D-5. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “correlation length” as applied to the texture map

generated by the IRMA (unsmoothed output) technique.
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Figure D-6. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Homogeneity” as applied to the texture map

generated by the Stoksik (1995) technique.




Mectric Valuc Histogram
80
GLCM Homogencity Lohmann (1995) Tcchnique

70 4

60 |
"
=
=sor
=
-
340
pot
'3
-
Bao
=4

20

10

[
0.012 0.0122 0.0124 0.0126 0.0128 0.013
Metric Value

Figure D-7. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Homogeneity” as applied to the texture map
generated by the Lohmann (1995) technique.
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Figure D-8. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Homogeneity” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-9. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Homogeneity” as applied to the texture map
generated by the IRMA (Smoothed Output) technique.
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Figure D-10. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Homogeneity” as applied to the texture map
generated by the IRMA (Unsmoothed Output) technique.
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Figure D-11. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Correlation” as applied to the texture map
generated by the Stoksik (1995) technique.
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Figure D-12. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Correlation” as applied to the texture map
generated by the Lohmann (1995) technique.
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Figure D-13. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Correlation” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-14. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Correlation” as applied to the texture map
generated by the IRMA (Smoothed Output) technique.
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Figure D-15. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Correlation” as applied to the texture map
generated by the IRMA (Unsmoothed Output) technique.
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Figure D-16. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Entropy” as applied to the texture map
generated by the Stoksik (1995) technique.
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Figure D-17. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Entropy” as applied to the texture map
generated by the Lohmann (1995) technique.
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Figure D-18. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Entropy” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-19. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Entropy” as applied to the texture map
generated by the IRMA (Smoothed Output) technique.
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Figure D-20. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Entropy” as applied to the texture map
generated by the IRMA (Unsmoothed Output) technique.
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Figure D-21. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “Fractal Dimension” as applied to the texture map

generated by the Stoksik (1995) technique.
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Figure D-22. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “Fractal Dimension” as applied to the texture map

generated by the Lohmann (1995) technique.
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Figure D-23. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “Fractal Dimension” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-24. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “Fractal Dimension” as applied to the texture map
generated by the IRMA (Smoothed Output) technique.
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Figure D-25. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “Fractal Dimension” as applied to the texture map
generated by the IRMA (Unsmooothed Output) technique.
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Figure D-26. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Contrast” as applied to the texture map
generated by the Stoksik (1995) technique.
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Figure D-27. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Contrast” as applied to the texture map
generated by the Lohmann (1995) technique.
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Figure D-28. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Contrast” as applied to the texture map
generated by the Midpoint Replacement technique.
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Figure D-29. One of the histograms used to derive the parameters listed in
Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Contrast” as applied to the texture map
generated by the IRMA (Smoothed Output) technique.
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Figure D-30. One of the histograms used to derive the parameters listed in

Table 3 of the main body of the report. This particular histogram shows the
distribution of the metric “GLCM Contrast” as applied to the texture map .
generated by the IRMA (Unsmoothed Output) technique.
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Appendix E
AR (1) Process: A Brief Discussion
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According to Kendall (1976), an autoregressive process is a stationary
series which is “...generated by a mechanism in which the value of the
series at time ¢ is expressed in terms of the past values -- a systematic
dependence on past history -- plus a ‘disturbance’ term & happening at time
t” Stationarity is defined here as applying to a series which has had its
trend removed or has never had a trend. The autoregressive process of
order p is one defined by :

U, = =0 U_ | — QU = —Q,U_,+E,.

Because the form of this equation suggests a regression process, the term
“autoregressive” has been coined -- in fact, this is not necessarily so. The
first order autoregressive process, AR(1), is also know as a Markov process
and is defined by:

u =-au,_ +¢g,.
Rewriting this (still following Kendall) as:
u, = pu,, + <,

then allows, after rearranging of terms and further calculations, for the
determination that the autocorrelation of u, at lag 1 (p) is the same as the
value of the coefficient —a, in the above equation. The limits on the value
of p are that it be less than or equal to 1 and, if the autocorrelation function
is to decay without oscillation, then it should also be positive; otherwise, the
autocorrelation function will oscillate as it decays.

Another way of considering the AR(1) process is that it is a linear process
which has as its input white noise (Jenkins and Watts, 1969) which is
filtered through the equivalent of an RC circuit whose transfer function is

given by:

1 -
h(v)=—e T.
) T°




Such a linear process is given by:

dx ()

T—d;——+(X(t)— u) = Z(1)

where:

X(¢) = system output

Z(t) = system input (white noise)
T = system time constant
.

= mean of the process.

This has a digital analog which is just that described above and given by

Kendall.
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Mid-Point Displacement Code
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Appendix I

“Accurate Fractal” Code
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Appendix J

Discussion of Fractal Dimensions
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There are several points which must be considered under the topic of
“fractal analysis” and/or synthetic scene generation using a “fractal seed”.
These can be summarized to three main categories:

1. Underlying Model: Is the texture monofractal or multifractal?

2. Metrics: Which tool does one use to measure the “dimension” (e.g.,
power spectrum or variogram)?

3.Generation/Simulation Mechanism: Which synthetic “scene” tool to use
(e.g., midpoint displacement or “accurate fractal”)?

For the purposes of the study reported here, we assumed a monofractal
model and used the power spectrum as the tool for determining the “fractal
dimension” of the texture. We then chose the midpoint displacement
algorithm as the fractal “scene” generation tool. As part of the initial study,
we also applied another scene generation technique (Stoksik, 1995) as it
was suggested that it could more accurately replicate a texture whose fractal
dimension were the same as the “input” dimension -- this part of the effort
was undertaken after the main study was already begun; hence, it was
included only in appendices to the main report (Appendix A: Modified
Mid-Point Displacement Algorithm) and even then, not in as complete a
manner as the other techniques. The approach taken in this report has left
some unanswered questions which it was felt should be addressed even if
they could not be answered. What instigated this discussion is that the
“measured” fractal dimensions of some of the texture maps were outside the
accepted bounds for that metric; i.e., fractal dimensions greater that 3 were
obtained for some surfaces. Post facto efforts to rationalize these results
have arrived at some conclusions which are of interest. These will be
addressed below, briefly.

First, there are techniques to determine whether or not the object of study is
a fractal -- we chose to not use them at the outset for several reasons:

1. limited resources,
2. an incomplete understanding, on our part, of this whole fractal business,

and
3. more than likely, there are no accepted procedures to follow anyway

(Tsonis and Elsner, 1995)




Some of these are addressed in a péper by Lovejoy et al. (1995). For
example, common techniques to measure the fractal dimension of a
“process” use variogram or spectral methods to arrive at a “fractal
dimension” -- according to Lovejoy et al.(1995), these -methods “...measure
the scaling exponent of the second order moments...which is not a fractal
dimension” unless monofractality is assumed and, indeed, is true.
Otherwise, the measurement is erroneous. Many making “fractal
measurements” discuss complex techniques; but then, choose those ways
of doing things with which they are most comfortable and which are in
many cases the simplest (we were no different in that we chose techniques
that were already in use by us and with which we were already
comfortable). These simple techniques may work for truly fractal
phenomena; however, when the process is multifractal, much more
complicated techniques are required. Those who shun power spectral
methods because of their complexity will find multifractal analysis much
more difficult to both accomplish and understand. “A fractal is a
geometrical set of points; a multifractal is a mathematical measure. ...many
results derived for fractal sets and monofractal functions will not apply
(Lavallée et al., 1993).” So, were the effort described in this report to be
done again, it is highly recommended that this issue between fractal and
multifractal, and even between fractal and Euclidean, be resolved first. The
point here is that if our target texture were non-fractal or even multifractal,
then the results of applying our metrics have no meaning and the validity of
the number used by the synthetic scene generation algorithm would then be
suspect.

Second is the problem of the metrics. It turns out that there are a large
number of metrics available to determine the fractal dimension of an
“object” of study -- some are more or less appropriate depending on the
object while others are not and still others are misunderstood (e.g., see
Kinsner, 1994). For example, there is the subject of using the power
spectrum as a tool to determine the fractal dimension of a surface -- Voss
(1988) gives equations for and discusses the use of the 1-, 2-, and 3-
dimensional power spectrum for the determination of the fractal dimension
of those “objects”: a line, a surface, and a volume, respectively. He
describes the relationship between them with the conclusion on many
analysts’ part that one can determine the power spectrum of a vertical cut
through a surface and that the slope of this is just one less than the power
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spectrum of the surface (2-dimensional) -- it may be that this conclusion is
erroneous (Clarke and Schweizer, 1991)) and that the correct relationship
between the fractal dimension of a surface and a cut through that surface is
for a horizontal cut -- not a vertical cut! This then begs the question of how
one determines the power spectrum of a line which forms the horizontal cut
or is it truly acceptable to compare results from vertical cuts with 2-
dimensional power spectra? Huang and Turcotte (1990) and Turcotte
(1992) seem to arrive at acceptable results this way -- they describe the
results of applying power spectra to small portions of the topographic map
of Oregon with good results in the comparison between one-dimensional
vertical cut and two-dimensional spectra (though, in an earlier paper
(Huang and Turcotte, 1989) which studied the state of Arizona, the
agreement was not very good and they do not discuss the discrepancy,
anywhere!). Lam and De Cola (1993) describe an isarithm technique for
dealing with the horizontal cut as well as a variogram technique for dealing
with the whole surface. We have applied the variogram technique to
several of our texture maps for the purpose of measuring with another
technique. This is discussed next.

The variogram technique which we applied to 11 each midpoint
displacement and accurate fractal maps does not seem to clear up the
measurement problem and, in fact, may not even be appropriate (Lavallée et
al., 1993) Regardless, figures 1 and 2 show examples of the variogram for
two different texture maps, one each for the two fractal generation
techniques. The least squares fit to the variogram is supposed to yield the
“Hurst Parameter”, H. For all of the variograms used here, we fitted only
over the “linear” portion with the following results as given in Table 1. So,
we have a paradox: of the two simulation techniques, the one which is the
most “accurate”, performs poorest. At least, this is so for the variogram
measurement algorithm; perhaps, another metric would yield different
results and, the sample size may be too small to derive a valid conclusion
on this point, anyway. According to Tsonis and Elsner (1995), these
techniques are inadequate to demonstrate scaling -- what we have done is
assumed scaling and not checked the viability of the assumption.
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Figure 1J. Variogram estimate for one of the midpoint displacement texture
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Figure 2J. Variogram estimate for one of the accurate fractal texture maps.
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Still another issue, also discussed in the paper by Tsonis and Elsner (1995)
and others, is that for the type of data with which we are working, self-
affine processes are important. This also means that the dimensions that we
arrive at are supposed to be the result of an “ensemble average” -- the
sample that we are working with may or may not be representative of this
process. Similarly, the synthetic generation processes need to be run many
times to arrive at a statistically significant sample size (Tsonis and Elsner,
1995, in their experiment ran their sample size to 1000).

Table 1. Variogram measurement of the fractal dimension for 11 texture
maps for each of the two different “fractal” texture generation algorithms
(the algorithms were run with H=0.28 as a seed).

Source Hurst parameter Hurst parameter Fractal dimension
(average) (standard deviation) (D=3-H)

Midpoint 0.286 0.064 2.714

displacement

Accurate fractal|  0.200 0.066 2.800

As is seen by the results shown in Table 1, different scene generation
techniques yield different results -- which one is correct? Or Best? Again,
more work is indicated. However, the problem which will remain is one of
separating the measurement technique from the process being measured.
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